Energy for Water and Water for Energy on Maui Island, Hawaii

E.A. Grubert and M.E. Webber, June 2015 (Citation)


Energy and water systems are interconnected. This work first characterizes 2010 primary energy demand for direct water services and local freshwater demand for energy on Maui Island, Hawaii, then investigates scenarios for future changes in these demands. The goal of this manuscript is to dissect the relationship and trends of energy–water connections to inform policymaking decisions related to water and energy planning. Analysis proceeds by inventorying water and energy flows and adjusting to a 2010 base year, then applying intensity factors for energy or water used at a given stage for a given sector to determine absolute energy and water demands for the isolated system of Maui Island. These bottom-up, intensity-based values are validated against published data where available. Maui consumes about 0.05% of its freshwater for energy (versus >6% for the US on average) and about 32% of its electricity (19% of its on-island primary energy) for direct water services (versus 8% of primary energy for the US on average). These values could change with policy choices like increased instream flows, higher wastewater treatment standards, electricity fuel mix changes, desalination, or increased biofuels production. This letter contributes a granular assessment of both energy for water and water for energy in a single isolated system, highlighting opportunities to address energy–water interdependencies in a context that could be relevant in other communities facing similar choices.


E.A. Grubert and M.E. Webber, “Energy for Water and Water for Energy on Maui Island, Hawaii,” Environmental Research Letters (2015).